MariaDB/Galera Cluster 기술 노트!!

Overview

MariaDB에서 MariaDB/Galera Cluster 제품군을 새롭게 출시하였습니다.MariaDB/Galera는 MariaDB의 Synchronous 방식으로 동작하는 다중 마스터 클러스터입니다.

MariaDB/Galera Cluster은 Galera 라이브러리를 사용하여 노드 간 데이터 복제를 수행합니다. 물론 아직은 Alpha 버전으로 발표되기는 했지만, 조만간 안정적인 버전이 릴리즈 되면 상당한 물건이 될만한 놈입니다.

오늘은 이에 관해 간단하게 리뷰를 하겠습니다.

Feature & Benefits

먼저 MariaDB/Galera Cluster의 특징은 다음과 같이 몇 가지로 나눠볼 수 있습니다.

  • Synchronous 방식으로 노드 간 데이터 복제
  • Active-Active 방식의 다중 마스터 구성 – 모든 노드에서 읽기/쓰기가 가능
  • 클러스터 내 노드 자동 컨트롤 – 특정 노드 장애 시 자동으로 해당 노드 제거
  • 자동으로 신규 노드 추가
  • 완벽한 병렬적으로 데이터를 행단위로 복제
  • 기존의 MySQL 클라이언트 방식으로 동작

cluster-diagram1
출처 : http://www.percona.com/doc/percona-xtradb-cluster/_images/cluster-diagram1.png

이와 같은 특징에서 전통적인 Asynchronous 방식의 리플리케이션이 가지는 한계점이 해결됩니다.

  • 마스터/슬레이브간 데이터 동기화 지연 없음
  • 노드 간 유실되는 트랜잭션이 없음
  • 읽기/쓰기 모두 확장이 가능
  • 클라이언트의 대기 시간이 줄어듬 – 데이터는 로컬 노드에 존재

하지만 Replication이 가지는 본연의 한계점은 여전히 내재합니다.

  • 신규 노드 추가 시 부하 발생 – 신규 노드 추가 시 모든 데이터를 복사해야 함
  • 효과적인 쓰기 확장 솔루션에는 한계 – 서버 간 Group Communication시 트래픽 발생
  • 모든 서버 노드에 동일한 데이터를 유지해야 함 – 저장 공간 낭비

MariaDB/Galera Cluster

MariaDB/Galera cluster는 Galera 라이브러리를 사용하여 리플리케이션을 수행한다고 하는데 Galera Replication은 어떤 방식으로 동작할까요?

Galera Replication은 wsrep API로 노드 간 통신을 하며, MariaDB 측에서는 wsrep API에 맞게 내부적인 개선하였다고 합니다. MySQL-wsrep는 https://launchpad.net/codership-mysql에서 시작한 오픈소스 프로젝트입니다.

MySQL-wsrep는 MySQL의 InnoDB스토리지 엔진 내부에서 Write Set(기록 집합 : 트랜잭션의 기록하는 모든 논리적인 데이터 집합)을 추출하고 적용하는 구현됩니다. 노드 간 Write Set을 전송 및 통신을 위해서는 별도의 리플리케이션 플러그인을 사용하며, 리플리케이션 엔진은 wsrep에 정의된 Call/Callback 함수에 따라 동작합니다.

1) Synchronous vs. Asynchronous

먼저 Synchronous와 Asynchronous 리플리케이션의 차이점에 대해서 설명하겠습니다.

리플리케이션의 두 가지 방식의 가장 기본적인 차이점은 클러스터 내 특정 노드에서 데이터 변경이 발생하였을 때 다른 노드들에 동시에 데이터 변경이 적용되는 것을 보장는지 여부에 있습니다.

Asynchronous 방식의 Replication은 마스터 노드에서 발생한 변화가 슬레이브 노드에 동시에 적용되는 것을 보장하지 않습니다. 마스터/슬레이브 간 데이터 동기화 지연은 언제든 발생할 수 있으며, 마스터 노드가 갑자기 다운되는 경우 가장 최근의 변경 사항이 슬레이브 노드에서는 일부 유실될 수도 있는 가능성도 있습니다.

Synchronous 방식의 Replication은 Asynchronous에 비해 다음과 같은 강점을 가집니다.

  • 노드 장애 시에도 데이터 유실 없이 높은 가용성 달성
  • 트랜잭션은 모든 노드에서 동시 다발적으로 발생
  • 클러스트 내 모든 노드 간 데이터 일관성을 보장

그러나 Synchronous Replication 수행을 위해서는 2단계 Commit 필요하거나 분산 잠금과 같은 상당히 느린 방식으로 동작합니다.

Synchronous 방식의 Replication은 성능 이슈와 및 복잡한 구현 내부적으로 요구되기 때문에 여전히 Asynchronous 방식의 Replication이 널리 사용되고 있습니다. 오픈 소스 대명사로 불리는 MySQL과 PostgreSQL이 Asynchronous 방식으로만 데이터 복제가 이루어지는 것 또한 그와 같은 이유에서입니다.

2) Certification Based Replication Method

성능 저하 없이 Synchronous하게 데이터베이스 리플리케이션을 구현하기 위해 “Group Communication and Transaction Ordering techniques”이라는 새로운 방식이 고안되었습니다. 이것은 많은 연구자들(Database State Machine Approach and Don’t Be Lazy, Be Consistent)이 제안했던 방식으로, 프로토타입 구현해본 결과 상당한 발전 가능성을 보여주었던 바가 있습니다.

Galera Replication은 높은 가용성과 성능이 필요한 어플리케이션에서는 상당히 쉽고 확장 가능한 Synchronous 방식의 리플리케이션을 제공하며 다음과 같은 특징이 있습니다.

  • 높은 가용성
  • 높은 투명성(알기 쉽다는 의미)
  • 높은 확장성(어플리케이션에 따라 거의 선형적인 확장까지도 가능)

Galera 리플리케이션은 분할된 라이브러리와 같이 동작하고, wsrep API로 동작하는 시스템이라면 어떠한 트랜잭션과도 연관되어 동작할 수 있는 구조입니다.

3) Galera Replication implementation

Galera Replication의 가장 큰 특징은 트랜잭션이 커밋되는 시점에 다른 노드에 유효한 트랜잭션인지 여부를 체크하는 방식으로 동작한다는 점입니다. 클러스트 내에서 트랜잭션은 모든 서버에 동시에 반영되거나 전부 반영되지 않는 경우 둘 중 하나입니다.

트랜잭션 커밋이 가능한 여부는 네트워크를 통해서 다른 노드와의 통신에서 결정합니다. 그렇기 때문에 커밋 시 커밋 요청에 대한 응답 시간이 존재하죠. 커밋 요청에 대한 응답 시간은 다음 요소에 영향을 받습니다.

  • 네트워크 왕복 시간
  • 타 노드에서 유효성 체크 시간
  • 각 노드에서 데이터 반영 시간

여기서 재미있는 사실은 트랜잭션을 시작하는 시점(BEGIN)에는 자신의 노드에서는 Pessimistic Locking으로 동작하나, 노드 사이에서는 Optimistic Locking Model로 동작한다는 점입니다. 먼저 트랜잭션을 자신의 노드에 수행을 하고, 커밋을 한 시점에 다른 노드로부터 해당 트랜잭션에 대한 유효성을 받는다는 것이죠. 보통 InnoDB와 같이 트랜잭션을 지원하는 시스템인 경우 SQL이 시작되는 시점에서 Lock 감지를 하나, 여기서는 커밋되는 시점에 노드 간 트랜잭션 유효성 체크를 합니다.

위 그림에서 커밋되는 시점에 마스터 노드에서 슬레이브 노드에 이벤트를 날립니다. 그리고 슬레이브 노드에서 유효성 체크 후 데이터를 정상적으로 반영하게되면 실제 마스터 노드에서 커밋 완료가 되는 것이죠. 그렇지 않은 경우는 롤백 처리됩니다. 이 모든 것은 클러스터 내부에서 동시에 이루어집니다.

4) Galera Replication VS MySQL Replication

CAP 모델 관점에서 본다면 MySQL Replication은 “Availability”과 “Partitioning tolerance”로 동작하지만 Galera Replication에서는  “Consistency”과 “Availability” 로 동작한다는 점에서 차이가 있습니다. MySQL Replication은 데이터 일관성을 보장하지 않음에 반해 Galera Replication은 데이터 일관성을 보장합니다.

C – Consistency (모든 노드의 데이터 일관성 유지)
A – Availability (모든 노드에서 항시 Read/Write이 가능해야 함)
P – Partitioning tolerance (내부 네트워크 단절 시에도 정상적으로 작동해야함)

5) Limitations

현재는 Alpha 버전으로 릴리즈되었고, 추후 안정적인 버전이 나오겠지만, 태생적으로 가지는 한계가 있습니다.

데이터 일관성 유지를 위해서 트랜잭션이 필요한 만큼, 트랜잭션이 기능이 있는 스토리지 엔진에서만 동작합니다. 현재까지는 오직 InnoDB에서만 가능하다고 하네요. MyISAM과 같이 커밋/롤백 개념이 없는 스토리지 엔진은 데이터 복제가 이뤄질 수 없다는 점이죠.

Row 기반으로 데이터 복제가 이루어지기 때문에 반드시 Primary Key가 있어야 합니다. Oracle RAC와 같이 공유 스토리지에서 동일한 데이터 파일을 사용한다면 Rowid가 같으므로 큰 문제가 없겠지만, 물리적으로 스토리지가 독립적인 구조이기 때문이죠. 이것은 기존 MySQL Replication에서도 주의하고 사용해야할 사항이기도 합니다.

최대 가능한 트랜잭션 사이즈는 wsrep_max_ws_rows와 wsrep_max_ws_size에 정의된 설정 값에 제약을 받으며, LOAD DATA INFILE 처리 시 매 1만 건 시 커밋이 자동으로 이루어집니다.

트랜잭션 유효성이 커밋되는 시점에서 이루어지며, 동일한 행에 두 개의 노드에서 데이터 변경을 시도한다면 오직 하나의 노드에서만 데이터 변경이 가능합니다.

또한 원거리 리플리케이션 경우 커밋에 대한 응답 요청으로 인하여 전반적인 시스템 성능 저하가 발생합니다.

Conclusion

MariaDB/Galera Cluster은 전통적인 MySQL Replication이 가지는 가장 큰 문제점이었던 데이터 동기화 지연과 노드 간 트랜잭션 유실 가능에 대한 해결책을 제시합니다.

또한 노드 내부에서는 InnoDB 고유의 트랜잭션으로 동작하고, 실제 커밋이 발생하는 시점에 다른 노드에게 유효성을 체크 및 동시 커밋한다는 점에서 재미있는 방식으로 동작하죠. 결국 기존 MySQL 아키텍트는 그대로 유지하고, Replication 동작에 관한 방법만 수정하여 RDBMS 기반의 분산 DBMS 를 내놨다는 점에서 상당히 흥미로운 제품입니다.

그러나, 동일한 데이터 변경 이슈가 많은 서비스 경우 노드 간 데이터 충돌이 자주 발생 가능성이 있을 것으로 판단됩니다. 데이터 충돌이 발생하여 자주 트랜잭션 롤백이 발생하면 사용자 별로 원활한 서비스 사용이 불가하니, 이에 대한 대책을 어플리케이션 레벨에서 적절하게 고려하여 서비스 설계를 해야 하겠죠. 예를 들어 노드 단위로 주로 변경할 데이터를 나눠서 처리하는 방식으로 서비스 설계가 이뤄져야하지 않을까 생각합니다.

Synchronous 방식으로 노드 간 데이터 복제가 이루어진다는 점에서 아주 반가운 소식이기는 하지만, 기존과 같이 데이터를 설계하면 오히려 서비스 안정성이 크게 떨어질 수도 있다는 점에서 새로운 변화가 예상됩니다.

관련 벤치마크와 안정성 검토가 반드시 필요합니다. 데이터는 거짓말을 하지 않으니..^^

감사합니다.

MySQL 성능 최적화를 위한 몇 가지 팁!!

Overview

트위터에서 우연히 성능 관련 가벼운 아는척(?)을 시작으로 일이 커지고 말았네요. ^^;; 성능 관련된 트윗을 보고 몇 가지 코멘트만 한다는 것이.. ㅎㄷㄷ한 멘션이 되고 말았습니다.

그래서 부족하나마, MySQL 성능 최적화 시 “본능적”으로 이행하는 몇 가지를 정리해보겠습니다.

Global Variable

성능과 연관이 되는 몇 가지 파라메터 변수는 반드시 체크를 하시기 바랍니다. MySQL에서 주로 InnoDB를 사용하는 상태라면 innodb_buffer_pool_size, innodb_log_file_size,  innodb_log_files_in_group, innodb_flush_log_at_trx_commit, innodb_doublewrite, sync_binlog 정도가 성능에 직접적인 영향을 미치는 요소라고 볼 수 있습니다.

  • innodb_buffer_pool_size
    InnoDB에게 할당하는 버퍼 사이즈로 50~60%가 적당하며, 지나치게 많이 할당하면 Swap이 발생할 수 있습니다.
  • innodb_log_file_size
    트랜잭션 로그를 기록하는 파일 사이즈이며, 128MB ~ 256MB가 적당합니다.
  • innodb_log_files_in_group
    트랜잭션 로그 파일 개수로  3개로 설정합니다.
  • innodb_flush_log_at_trx_commit
    서비스 정책에 따라 다르게 설정하겠지만, 저는 일반적으로 2값으로 세팅합니다.
    – 0: 초당 1회씩 트랜잭션 로그 파일(innodb_log_file)에 기록
    – 1: 트랜잭션 커밋 시 로그 파일과 데이터 파일에 기록
    – 2: 트랜잭션 커밋 시 로그 파일에만 기록, 매초 데이터 파일에 기록
  • innodb_doublewrite
    이중으로 쓰기 버퍼를 사용하는지 여부를 설정하는 변수로 활성화 시 innodb_doublewrite 공간에 기록 후 데이터 저장합니다. 저는 활성화합니다.
  • sync_binlog
    트랜잭션 커밋 시 바이너리 로그에 기록할 것인지에 관한 설정이며, 저는 비활성 처리합니다.

참고로 innodb_buffer_pool_size를 32G  메모리 서버에서 24G로 할당한 적이 있는데, SQL트래픽이 많아짐에 따라 Swap이 발생하더군요. 버퍼풀에는 대략 한 시간 정도 Active한 데이터와 인덱스를 담을 수 있는 사이징이라면 적절할 것 같습니다.

sync_binlog는 binlog 파일에 매 트랜잭션마다 기록할 것인지를 설정하는 파라메터인데, BBWC 혹은 FBWC이 없다면 활성화를 권고하지 않습니다. (개인적으로 경험해본 바에 따르면 on/off에 따라서 10~20배 정도 차이가 나기도 하더군요.)

Session Variables

MySQL은 단일 쓰레드에서 Nested Loop 방식으로 데이터를 처리합니다. 물론 5.6 버전부터는 조인 알고리즘이 몇가지 더 추가되기는 하지만, 여전히 미흡하죠. 결국 SQL처리 시 일시적으로 사용하는 Temporary Table이 디스크에 사용되지 않도록 유도하는 것이 제일 중요한 것 같습니다.

먼저 mysqladmin 유틸리티로 현재 Temporary Table 현황을 모니터링 하도록 합니다. 매 초마다 Status 차이를 보여주는 명령어이며, Created_tmp_files 이 꾸준히 많다면 tmp_table_size를 늘려줄 필요가 있습니다. Global Variable 에 설정하는 것보다는 필요 시 Session Variable로 설정하는 것을 권고 드립니다.

mysqladmin -uroot -p extended-status -r -i 1 | grep -E 'Created_tmp|--'

통계성 쿼리 질의 전 아래와 같이 세션 변수 설정(2G로 할당)을 한 후 진행하면 한결 빠르게 쿼리가 처리됩니다.

set session tmp_table_size = 2 * 1024 * 1024 * 1024;
set session max_heap_table_size = 2 * 1024 * 1024 * 1024;

하지만 이것은 어디까지나 디스크 접근을 줄이기 위한 목적이므로, 쿼리 자체를 수정하거나 다른 접근 방법으로 데이터를 처리하는 것이 가장 확실한 방법일 것입니다.

만약 Create Table As Select 혹은 Insert into .. Select 구문을 자주 사용하여 통계 데이터를 입력한다면 Transaction Isolation을 READ-COMMITTED로 변경하시기 바랍니다. 구문 실행 도중 Lock이 발생할 수 있기 때문이죠. ^^

예전에 포스팅한 MySQL 트랜잭션 Isolation Level로 인한 장애 사전 예방 법을 참고하세요.

Schema & SQL

MySQL에서는 서버 변수보다는 Schema와 SQL 특성에 큰 영향을 받는 DBMS 입니다. 일단 서버 설정이 기본적인 사이징정도로만 구성되면, 그 이후로는 Schema와 SQL이 DB특성에 맞게 작성되었는지 여부가 성능에 가장 큰 요소가 됩니다.

MySQL 특징은 예전 포스팅 ““을 참고하시면 되겠습니다.

1) Schema

InnoDB를 주로 사용한다는 가정 하에 말씀 드리겠습니다.

InnoDB 는 Primary Key 순으로 데이터가 저장됩니다. Primary Key가 Rowid처럼 사용되는 것이죠. 만약 Primary Key가 무작위로 입력되는 테이블이라면, 테이블에 데이터가 누적됨에 따라 성능도 비례하게 떨어지게 됩니다. Primary Key는 순차적으로 저장되도록 하며, 만약 구조 상 여의치 않다면 테이블 파티셔닝을 통해서 데이터 파일 사이즈를 최소로 유지하시기 바랍니다.

mysql secondary index

그리고  Secondary Index는 위 그림처럼 Primary Key를 Value 로 가집니다. 모든 Secondary Index 에는 Primary Key를 가지기 때문에 Primary Key의 데이터 타입이 전체 인덱스 사이즈에 큰 영향을 미칩니다.

InnoDB에서는 경우에 따라서, 인덱스가 실 데이터보다 더 큰 경우가 자주 있습니다. 그러한 경우가 있는지를 확인하고, 인덱스 사이즈를 최대한 줄이는 것이 성능상 좋습니다. 간단한 테이블 조회 쿼리입니다.

SELECT
    CONCAT(TABLE_SCHEMA,'.',TABLE_NAME) TABLE_NAME,
    CONCAT(ROUND(TABLE_ROWS/1000000,2),'M') ROWS,
    CONCAT(ROUND(DATA_LENGTH/(1024*1024),2),'M') DATA,
    CONCAT(ROUND(INDEX_LENGTH/(1024*1024),2),'M') IDX,
    CONCAT(ROUND((DATA_LENGTH+INDEX_LENGTH)/(1024*1024),2),'M') TOTAL_SIZE,
    ROUND(INDEX_LENGTH/DATA_LENGTH,2) IDXFRAC,
    ENGINE
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA NOT IN ('mysql','information_schema', 'performance_schema')
ORDER BY DATA_LENGTH+INDEX_LENGTH DESC;

문자열 인덱스라면 Trigger + CRC32로 사이즈를 줄일 수 있습니다. 트리거에서 Insert혹은 Update가 발생하면 CRC32 함수로 문자열을 Unsigned Int 타입으로 변환하여 특정 칼럼에 저장하고, 해당 칼럼을 인덱스 필드로 사용하는 것입니다.

간단한 트리거 예제입니다. Insert 관련이며, Update 는 비슷하게 정의하시면 되겠죠. ^^

CREATE TRIGGER trg_test_insert
BEFORE INSERT ON test
FOR EACH ROW
BEGIN
  SET NEW.str_crc = CRC32(LOWER(TRIM(NEW.str)));
END$$

질의는 다음과 같이 합니다. 대략 1/43억 확률로 중복 데이터가 발생할 수 있으나, str값을 다시 조회 조건으로 주기 때문에 정상적인 데이터만 가져옵니다.

SELECT * FROM test
WHERE str = 'abcdefg'
AND str_crc = CRC32(LOWER(TRIM('abcdefg')));

이같이 쓰는 이유는 문자열 칼럼에 인덱스를 제거하기 위함이니 헷갈리시면 안됩니다!!

트리거 활용을 잘 하면 DB 자원을 많이 잡아먹는 성능 취약 요소를 최소화할 수 있습니다. 예를 들어 특정 통계 데이터가 자주 필요한 경우라면, 매번 Group By 질의를 하지 않고 트리거로 통계 테이블에 데이터를 적용하면서 수행하는 것도 한가지 방안입니다. 그렇다고 무조건 트리거를 맹신해서는 안됩니다. ^^;; 트리거는 최대한 단순하게 필요한 만큼만!!

2) SQL

SQL 관련은 문제 발생 요소가 너무도 다양해서 자세하게 설명하기가 어렵습니다. 먼저 예전 포스팅 ““를 참고하세요.

추가로 몇 가지 설명 더 드리겠습니다. 일단 다음과 같은 쿼리 습관은 좋지 않습니다.

SELECT * FROM userinfo
WHERE id IN (SELECT id FROM userinfo_log 
             WHERE reg_date > '2012-09-09');

서브 쿼리 실행 후 WHERE 조건을 수행하는 것이 아닌, 매번 데이터를 Nested Loop 탐색을 하면서 서브쿼리를 수행하기 때문에 불필요한 부하가 발생합니다.예전 포스트 ” Maria 1탄 – MySQL의 쌍둥이 형제 MariaDB를 소개합니다.“에 관련된 내용이 있으니 한번 읽어보세요. ^^

또한 다음과 같은 쿼리 습관은 최대한 피하시기 바랍니다.

SELECT ..
FROM (
    SELECT .. FROM .. WHERE ..
) a
INNER JOIN (
    SELECT .. FROM .. WHERE ..
) b ON a.col = b.col;

두 개의 서브 쿼리가 Temporary Table로 내부적으로 처리되면서, 두 테이블 간 풀 스캔이 발생합니다. Nested Loop방식으로 발생하는 풀 스캔은 시스템 성능에 엄청난 타격을 주므로, 테이블 구조를 잘 파악해서 인덱스를 잘 활용할 수 있도록 쿼리를 이쁘게(?) 작성하세요. (중간 테이블이 1만건씩이면 두 개 테이블 연산에는 1억 번의 연산이 필요합니다. ㅎㄷㄷ;;)

불필요한 Left조인이 있는지, 혹은 지나치게 서브 쿼리를 사용하는지, Select 조건에 들어간 칼럼이 반드시 필요한 데이터들인지, 커버링 인덱스를 사용할 수 있는 지 등여러 가지가 있겠습니다만, 다 언급하기에는 한계가 있네요. ^^

한가지 기억하실 것은 MySQL은 단일 쓰레드에서 Nested Loop 방식으로 데이터를 처리하므로, DB 가 처리할 데이터를 최소화 유도해야 한다는 것입니다.

Conclusion

계획없이 작성한 포스팅인만큼 여기저기 부족하고 보완해야할 부분이 여기저기 많습니다. 그치만 MySQL DB 성능을 최적화한다면, 살펴봐야할 몇 가지라는 생각이 들어서 간단하게나마 정리하였습니다. 성능에 직접적인 영향을 주는 환경 변수만 정책에 맞게 설정을 한 후에는 테이블 구조와 SQL을 MySQL 특성에 맞게 작성을 한다면 가시적인 효과를 빠르게 볼 수 있을 것 같네요. ^^

감사합니다.

SQL 작성 시 묵시적 형 변환 함정에 빠지지 말자!!

Overview

정말 오랜만에 포스팅합니다. 그동안 개인적인 일이 조금 있어서.. 조금 소홀이 했었네요. ^^

오늘은 묵시적인 형 변한에 대해서 설명을 드릴까 합니다. 서비스 쿼리를 작성하다보면, 이상이 없는 데 성능이 이상하게 안좋은 경우가 있습니다. 명시적으로 쿼리 내용을 볼 수 있다면 괜찮겠지만, 어플리케이션에서 변수를 바인딩하여 SQL을 실행하는 경우는 더욱 찾기가 어렵습니다.

묵시적 형 변환은 단순히 MySQL 뿐만 아니라 Oracle, MS-SQL 등 다른 DBMS에서도 반드시 주의를 해야하는 사항입니다.

묵시적 형 변환이란?

묵시적 형 변환이란 조건절 데이터 타입이 다르면 “우선 순위가 있는 쪽”으로 “형 변환”이 내부적으로 발생하는 것을 말합니다.

예를 들어 정수 값과와 문자열을 비교하는 경우, 숫자가 문자열보다 우선 순위에 있기 때문에 문자열은 정수값으로 자동 형 변환됩니다.

묵시적인 형 변환은 예외를 DBMS 내부적으로 처리하기 위함이므로, 서비스 도중 언제든지 발생할 수 있습니다. 하지만 만약 묵시적 형 변환이 일어나는 곳이 인덱스 칼럼이라면 어떨까요?  인덱스가 있을 지라도 조건 절을 처리하기 위해 모든 데이터를 묵시적으로 형 변환합니다. 이 경우 인덱스는 무의미하며 풀 테이블 스캔이 발생하죠.

자~! 직접 보시죠^^

테스트 환경 구성

1) 테이블 생성

## 테이블 생성
create table test(
  i int unsigned not null auto_increment,
  j int unsigned not null,
  s varchar(64) not null,
  d datetime not null,
  primary key(i)
);

## 인덱스 추가
alter table test add key (j), add key(s), add key(d);

2) 데이터 생성

스키마를 생성하였으니, 이제 데이터를 넣도록 하겠습니다. MySQL의 rand()와 crc32() 함수를 사용하여 정수, 문자열 그리고 날짜 데이터를 생성하여 위 테스트 테이블에 넣습니다.

먼저 test 테이블에 한 건 데이터를 다음과 같이 넣습니다.

insert into test (j, s, d)
values
(
    crc32(rand()), 
    crc32(rand())*12345,
    date_add(now(), interval -crc32(rand())/5 second)
);

그리고 다음과 같이 쿼리를 17번 실행하면 테이블에는 131072 건의 데이터가 저장됩니다. 물론 더 많은 데이터 환경에서 테스트를 하고자 한다면 몇 번 더 실행하면 되겠죠. ^^

insert into test (j, s, d)
select
    crc32(rand()), 
    crc32(rand())*12345,
    date_add(now(), interval -crc32(rand())/5 second)
from test;

이제 테스트 환경은 간단하게 구성되었습니다. 저는 위처럼 테스트 데이터를 간단하게 생성하였지만, 위 방법말고도 얼마든지 테스트 데이터를 생성할 수 있습니다.

빠른 테스트 환경을 구성하는 것이 제일 좋은 것 같아요. ^^ 더욱 안 귀찮은 방법이 있으면 저좀 알려주세요. (사실 저것도 귀찮다능~! ㅋ)

묵시적 형 변환 테스트

그리고 테스트를 할 데이터를 한 건 무작위로 가져와서 대상으로 정합니다.

select * from test order by rand() limit 1;

저는 다음 데이터를 기준으로 테스트를 진행하도록 하겠습니다. 무작위로 데이터를 생성하였기 때문에 위 쿼리 실행 결과과 다음과 같지 않을 수도 있습니다.

+--------+------------+----------------+---------------------+
| i      | j          | s              | d                   |
+--------+------------+----------------+---------------------+
| 122416 | 3835333344 | 17424528721665 | 2000-01-16 13:59:59 |
+--------+------------+----------------+---------------------+

정수 칼럼을 “문자열” 로 검색

위 테이블에서 j 는 정수형입니다. j 칼럼 기준으로 데이터를 검색할 경우 정수형이 아닌 문자열로 조건을 주었을 때 내부적인 처리입니다.

explain 
select * from test
where j = '3835333344';

+----+-------+------+------+---------+------+-------+
| id | table | type | key  | key_len | rows | Extra |
+----+-------+------+------+---------+------+-------+
|  1 | test  | ref  | j    | 4       |    1 |       |
+----+-------+------+------+---------+------+-------+

우선 순위가 정수형이 높기 때문에 문자열 조건 값은 묵시적으로 정수형으로 형 변환 되므로 실행 시 문제가 되지 않습니다.

문자열 칼럼을 “숫자”로 검색

s 칼럼은 문자열입니다. 이번에는 칼럼이 문자열인 경우에 정수 형 데이터 값으로 조회하는 경우를 테스트해보겠습니다.

explain 
select * from test 
where s = 17424528721665;

+----+-------+------+------+---------+--------+
| id | table | type | key  | key_len | rows   |
+----+-------+------+------+---------+--------+
|  1 | test  | ALL  | NULL | NULL    | 131276 |
+----+-------+------+------+---------+--------+

s 필드에 인덱스나 존재하나 묵시적인 형 변환으로 인하여 풀 테이블 스캔이 발생합니다. 위 테이블 데이터가 크지 않기 때문에 수행 속도가 느리지 않으나, 만약 천만건 이상의 데이터 환경에서 테스트하는 경우라면 엄청난 성능 저하가 발생합니다.

만약 파라메터 바인딩을 사용해서 문자열 칼럼에 정수형을 넣는 경우라면, 소스 상에서는 여간 찾기가 힘듭니다. 물론 MySQL에서 show processlist 명령을 수행하면 바인딩된 변수 값까지 나오지만, 경우에 따라서는 상당히 찾아내기 난해한 경우가 있습니다. 다음과 같은 경우를 예를 들 수 있습니다.

String sql = "select * from test where s = ?";
PreparedStatement pstmt = conn.prepareStatement(sql);
pstmt.setInt(1, 2406525903);

Conclusion

사실 이것저것 생각하기 싫다면 MySQL에서 무조건 문자열 조건으로 질의해도 큰 문제는 없습니다. 어차피 정수형이 문자열보다 우선 순위에 있기 때문에 문자열은 묵시적 형변환되기 때문이죠. 하지만 추후 다른 DBMS 로 데이터 이관하는 경우에는 문제가 생길 수 있습니다. 예를 들어 Oracle to PostgreSQL로 테스트 이관을 한 적이 있는데 DB 상의 데이터 타입과 바인딩되는 데이터 타입이 맞지 않으면 예외 처리할 수도 있습니다. (참고로 DB가 아닌 클라이언트 쪽에서 발생한 예외입니다.)

게다가 때로는 예기치 않는 결과 값이 발생할 수도 있습니다. 특히나 문자열 사이에 보이지 않는 문자가 포함된 경우에는.. 그러므로 묵시적 형 변환 함정에 빠지지 말고 반드시 조건절에는 칼럼 타입을 맞춰서 질의하는 것을 강력하게 권고 드립니다.

다른 재미있는 사례로 다시 포스팅하겠습니다.

감사합니다. ^^