MariaDB의 FederatedX를 소개합니다.

Overview

MySQL에는 Federated라는 스토리지 엔진이 있는데, 이는 원격의 테이블에 접근하여 제어하기 위한 용도로 사용됩니다.  얼마 전 이 엔진과 관련하여 재미있는 테스트를 하였는데, 이 내용을 소개하기에 앞서서 간단하게 정리해보도록 하겠습니다.

Features

FederatedX는 사실 MariaDB에서 Federated 엔진을 의미하는데, 이를 다른 이름으로 구분하는 것은 사실 더욱 확장된 기능을 가지기 때문입니다.

  1. 원격 서버 접근
    원격에 있는 테이블을 로컬에 있는 것처럼 사용
  2. 트랜잭션
    2-Phase Commit 형태로 데이터의 일관성을 유지
  3. 파티셔닝
    각 파티셔닝 별로 다른 원격 테이블 참조 가능

Usage

FederatedX 스토리지 엔진은 MariaDB에서는 기본적으로는 활성화되어 있습니다. MySQL에서는 별도의 옵션을 줘야만 활성화되는 것과는 다른 측면이죠.

테이블 생성 방법은 URL/아이디/패스워드를 모두 지정하여 생성하는 방법과, SERVER를 추가해서 사용하는 방법 두 가지가 있습니다.

1) Server 정보를 통한 테이블

CREATE SERVER 구문으로 원격 테이블 접속에 대한 설정을 등록하는 방식입니다. FederatedX 테이블을 사용하기에 앞서서 서버 정보를 등록합니다.

CREATE SERVER 'remote' FOREIGN DATA WRAPPER 'mysql' OPTIONS
(HOST 'remote',
 DATABASE 'target_db',
 USER 'appuser',
 PASSWORD 'passwd123',
 PORT 3306,
 SOCKET '',
 OWNER 'appuser');

위에서 등록한 서버 정보를 활용하여 FederatedX 테이블을 생성합니다.

CREATE TABLE `tb_remote` (
`col01` bigint(20) NOT NULL,
`col02` bigint(20) NOT NULL,
`col03` varchar(20) NOT NULL DEFAULT '',
PRIMARY KEY (`col01`)
) ENGINE=FEDERATED
CONNECTION='remote';

2) URL을 통한 테이블 생성

반드시 위와 같이 서버를 등록하고 FederatedX 테이블을 생성할 필요는 없습니다. 별다른 메타 정보 없이 직접 원격의 서버에 Connection 정보를 명시적으로 선언을 하여 FederatedX 테이블을 생성할 수 있습니다.

CREATE TABLE `tb_local` (
`col01` bigint(20) NOT NULL,
`col02` bigint(20) NOT NULL,
`col03` varchar(20) NOT NULL DEFAULT '',
PRIMARY KEY (`col01`)
) ENGINE=FEDERATED
connection='mysql://target_db:passwd123@remote:3306/target_db/tb_remote';

Connection은 “mysql://사용자:패스워드@호스트:포트/데이터베이스/테이블” 형태로 주면 되겠죠? ^^

3) 파티셔닝 테이블 구성

생성하는 방법을 알았으니, 이제 실제로 테이브을 생성해보도록 해보아요.

각 파티션 별로 직접 커넥션 정보를 명시하여 접근할 수 있겠지만.. 여기서는 서버를 등록하는 방식으로 예를 들도록 할께요.

먼저 서버 정보를 등록합니다.

CREATE SERVER 'remote1' FOREIGN DATA WRAPPER 'mysql' OPTIONS
(HOST 'remote1', 
 DATABASE 'target_db',
 USER 'appuser',
 PASSWORD 'passwd123',
 PORT 3306,
 SOCKET '',
 OWNER 'appuser');

CREATE SERVER 'remote2' FOREIGN DATA WRAPPER 'mysql' OPTIONS
(HOST 'remote2',
 DATABASE 'target_db',
 USER 'appuser',
 PASSWORD 'passwd123',
 PORT 3306,
 SOCKET '',
 OWNER 'appuser');

CREATE SERVER 'remote3' FOREIGN DATA WRAPPER 'mysql' OPTIONS
(HOST 'remote3',
 DATABASE 'target_db',
 USER 'appuser',
 PASSWORD 'passwd123',
 PORT 3306,
 SOCKET '',
 OWNER 'appuser');

그리고, 타 스토리지 엔진의 파티셔닝 테이블을 생성하는 형태로 테이블을 생성합니다.

CREATE TABLE `tb_remote` (
`col01` bigint(20) NOT NULL,
`col02` bigint(20) NOT NULL,
`col03` varchar(20) NOT NULL DEFAULT '',
PRIMARY KEY (`col01`)
) ENGINE=FEDERATED
PARTITION BY RANGE (col01)
(PARTITION p1000 VALUES LESS THAN (1001) CONNECTION='remote1',
 PARTITION p2000 VALUES LESS THAN (2001) CONNECTION='remote2',
 PARTITION p3000 VALUES LESS THAN (3001) CONNECTION='remote3');

아, 여기서 추가로 각 파티셔닝 정의에 Connection 정보, 여기서는 서버 정보를 같이 명시하여 테이블을 생성하면.. FederatedX를 통한 파티셔닝 테이블 완성~! 참 쉽죠잉??

Caution?!!!!

얼뜻, 보면 굉장해 보이는 기능입니다. FederatedX를 사용하면, 원격의 다수의 테이블에 접근을 할 수 있는 형태가 되기 때문, 굉장한 트래픽을 분산 형태로 처리할 수 있다는 기대감을 강력하게 뿜어냅니다. 자, 그럼 서비스에서 사용할 수 있을까요?? 제 대답은 강력한 “NO”입니다. 왜그러나고요?

자 간단하게 아래와 같이 LIMIT구문으로 한 건만 가져오는 쿼리를 실행한다고 한다면.. 특히, 개발 툴에서 누구나 쉽게 아래와 같이 쿼리를 질의를 하겠죠.

select * from tb_remote limit 1;

문제는, 모든 인덱스에 대한 실질적인 정보는 원격에 테이블에 있다는 점에 있습니다. FederatedX는 단지 어떤 식으로 테이블이 구성되어 있다는 대략적인 스키마 정도만 알고 있을 뿐, 결코 원격의 테이블에 있는 데이터 분포도 혹은 핸들러와 같은 오브젝트에 접근할 수 없습니다.

Federated Explain

 

 

Federated 경우 데이터가 물리적으로 엄격히 다른 타 서버에 존재하기 때문에, 데이터 처리 시 필요한 모든 데이터를 네트워크로 받아와야 합니다. 즉, 잘못하면 네트워크 대역폭을 한방(?)에 가득 채울 수도 있고, 쿼리 처리 또한 굉장히 버벅댈 수 밖에 없습니다.

Conclusion

지금까지 MariaDB의 Federated 엔진에 대해서 간단하게 살펴보았습니다.

위에서는 주의사항만 말해놓았지만, 사실 분포도가 아주 좋은 인덱스(예를 들면 Primary Key)를 통한 데이터 접근 시에는 전혀 문제가 되지 않습니다. 그렇지만, 모든 상황에서 인덱스를 고집할 수 있는 상황이기 때문에, 서비스에서 조회 용도로 사용하기에는 대단히 위험합니다.

만약 피치못할 사정에 활용을 해야한다면, 이 테이블을 통한 데이터 접근은 반드시 엄격하게 제어를 하여 사용하시기 바랍니다.

 

TokuDB? Fractal Index에 대해 알아보아요~!

이 글은 제가 MySQL Power Group에 예전에 포스팅한 자료입니다.
참고 : http://cafe.naver.com/mysqlpg/189


과거와는 다르게 데이터 사이즈가 비약적으로 커지고 있습니다. 특히, 최근 들어 SNS 서비스가 성황을 이루면서, 개인화된 데이터는 날이 갈수록 기하 급수적으로 늘어나고 있습니다. 최근 Fratical Index 기반의 TokuDB가 오픈 소스로 풀리면서 재조명을 받고 있는데, 이에 대해서 간단하게 설명해보도록 하겠습니다.

B-Tree?

TokuDB에 논하기에 앞서, 전통적인 트리 구조인 B-Tree에 대해 알아보도록 하죠.

일반적으로 RDBMS에서 인덱스는 대부분 B-Tree기반으로 동작하는데, 크게는 “Internal Node”와 “Leaf Node”로 나뉩니다. Internal Node는 데이터를 어느 방향(작으면 왼쪽, 크거나 같으면 오른쪽)으로 보낼 지 결정하는 Pivot과 다음 Pivot의 위치를 알려주는 포인터로 구성됩니다. Internal Node의 가장 마지막 포인터는 Leaf Node를 향하는데, Leaf Node에는 보통은 데이터가 저장이 되죠.

B-Tree

Leaf Node는 트리 특성대로 왼쪽에서 오른쪽으로 순서대로 데이터가 저장되어 있습니다. 이러한 특성으로 트리로 구성된 구조에서는 데이터를 특정 범위를 가져올 수 있는 Range 처리가 가능하죠.

B-Tree는 데이터가 증가를 해도 Pivot을 거치는 횟수가 일정 수치 이상으로는 늘어지는 않습니다. 물론 Pivot 수와 Leaf Node 수는 데이터 증가 수와 비례하여 선형적으로 늘어날 수도 있겠지만, 원하는 Leaf Node에 접근하기 위해 거치는 Pivot 수는 크게 늘지는 않습니다. (비용으로 따진다면.. 1회 데이터 접근이 O(logN)라는 수치가.. 신경은 안쓰셔도 됩니다. ^^)

위 트리에서 Leaf Node에 접근하기 위해 거치는 Pivot 수는 3입니다. 만약 Leaf Node가 8개로 늘어나게 되면 거쳐야 하는 수는 4번이고, 16개이면 5번이 됩니다. 즉, Leaf Node 수(데이터 사이즈)가 현재 수보다 2배 사이즈가 되어야 1회 더 거치게 되는 것이죠.

Leaf Node는 키 순으로 저장이 되어 있다는 것과 Pivot을 통한 데이터 접근이 가능한 B-Tree의 특성으로 단 건 데이터 접근과 특정 범위 처리에 좋은 성능을 보여줍니다.

그러나, 데이터 사이즈가 커지게 되면 B-Tree에도 큰 문제점에 봉착하게 되는데, 메모리 자원은 한계가 있다는 점입니다. 데이터가 커지면 모든 데이터를 메모리에 위치할 수가 없겠죠. 메모리 자원은 한정적이기 때문에, Leaf Node의 대부분은 디스크에 존재할 가능성이 크다. Leaf Node가 디스크에 존재하는 비율이 높아질 수록 해당 데이터를 Read/Write 시 잦은 Disk I/O가 발생할 수 밖에 없습니다.

B-Tree 한계

컴퓨터 시스템 내부에서 가장 느린 성능을 보여주는 것은 바로 디스크로부터 Read/Write을 수행하는 것인데요.. 아무리 좋은 알고리즘을 가지고 데이터를 처리한다 하여도, 잦은 디스크 접근을 통해 동작하게 되면, 게다가 그 동작이 순서가 보장되지 않는 랜덤한 디스크 블록을 읽어야하는 이슈라면 결코 성능이 보장되지 않습니다.

B-Tree 특성 상 트리에 데이터 유입 시 바로 반영을 해주어야 하기 때문에, 메모리가 부족하게 되면 Disk Read/Write에서 즉시 성능 병목 현상이 발생할 수밖에 없는 것이죠.

B-Tree 특성

아무리 CPU 자원이 남아돌아도, Disk I/O Wait으로 인해 처리할 데이터를 메모리에 로딩하지를 못하면, 의미없는 상태입니다. 디스크로부터 데이터를 읽어와야 요청을 처리할 수 밖에 없기 때문이죠. 잦은 Disk I/O Wait.. 이것은 성능 저하를 유발하는 가장 큰 요소입니다.

tokutek에서는 이러한 잦은 디스크 I/O로 인한 문제를 해결하고자 새로운 해결법은 제시하였는데, 그것은 바로 “Fractal Tree”입니다.

Fractal Tree?

그렇다면 Fractal Tree란 무엇일까요?

Fractal Tree는 “Big I/O”에 촛점을 맞춘 자료 구조로, 잦은 Disk I/O를 줄이고, 한번에 다량의 데이터를 하단 노드로 전달함에 따라 데이터가 많은 상황에서도 효과적으로 처리할 수 있는 방안을 제시합니다.

Fractal Tree의 생김새는 B-Tree와 크게 다르지는 않습니다. Fractal Tree는 B-Tree와 같이 Internal Node와 Leaf Node로 구성되어 있고, Leaf Node에는 일반적으로 데이터가 저장되어 있습니다. Internal Node는 데이터를 어느 방향(작으면 왼쪽, 크거나 같으면 오른쪽)으로 보낼 지 결정하는 Pivot과 다음 Pivot의 위치를 알려주는 포인터로 B-Tree와 마찬가지로 구성되나 한가지 특이한 점이 더 추가됩니다. 바로 각 Pivot에는 “Buffer 공간”이 있다는 점이죠.. 바로 아래 그림처럼 말이죠. ^^

Fractal Index

데이터가 유입되면, B-Tree처럼 바로 데이터를 Child Node(Pointer가 가리키는 Node)로 전달하지 않고, Buffer 공간에 저장을 합니다. 그리고 Buffer에 데이터가 가득 차는 순간 Buffer에 쌓인 데이터를 Child Node로 전달하게 됩니다. 버퍼를 어떻게 Child Node에 넘기는 지에 대한 내용은 스킵.. (쵸큼 많이 복잡해서.. 그림 그리기가 힘들어요. ㅠㅠ)

하단 이미지의 왼쪽 트리를 보면, 각 노드마다 버퍼 공간(회색 사각형)이 있습니다. 이 버퍼는 메모리 상에 존재하는 별도의 공간이며, 데이터가 유입 시 바로 자식 노드로 데이터를 내려보지 않고, 일시적으로 버퍼 공간에 보관을 합니다. 만약 하단 트리에서 2, 22 데이터가 유입되면(오른쪽 이미지 참고), 22 노드의 자식 노드로 바로 데이터를 내리지 않고 일시적으로 보관하고 있음을 보여줍니다. (버퍼는 최대 2개의 데이터를 저장할 수 있다고 가정!!)

Fractal Index Insert

이 상태에서 추가로 99 데이터가 들어오게 되면, 하단 그림 1)번과 같이 오른쪽 버퍼 공간에 채워지게 됩니다. 이후 23 데이터가 들어오면, 오른쪽 버퍼에 더 이상 공간이 없게 되므로, 이 순간 데이터를 자식 노드로 내리게 되죠. 이 단계에서 Disk I/O가 발생할 수는 단계이다. 버퍼 공간이 확보되면, 23을 다시 빈 버퍼 공간에 넣게 되며, 최종적으로 23이 Fractal Tree에 저장되게 됩니다.

즉, B-Tree에서 데이터 유입시 매번 자식 노드로 데이터를 보내며 발생하던 잦은 Disk I/O 수가 Fractal Tree에서는 각 노드에 존재하는 버퍼 공간으로 인해 극적으로 감소합니다. 실제로 TokuDB를 사용하고 테스트 데이터를 생성하는 동안, TokuDB의 데이터 사이즈 변화가 크지 않음에 처음에는 의아하기도 하였어요. ^^

한번에 Disk I/O가 발생하기에 얻을 수 있는 점은 I/O 횟수 외에 추가로 더 있습니다. B-Tree에서는 잦은 Random Insert시 Leaf Node의 블록이 단편화되는 현상이 잦아들 수 있겠지만, Fractal Tree에서는 뭉쳐서 Disk I/O를 수행하므로 압축률이 좋을 뿐만 아니라 블록 단편화가 훨씬 줄어들게 되는 것이죠. 물론 InnoDB에서 Barracuda로 압축 포멧으로 테이블을 구성할 수는 있겠지만, 블록 단편화가 많아지는 경우 압축률이 저하될 수밖에 없기에, 얻는 것보다는 오히려 잃는 것이 더 많아질 수 있습니다.ㅜㅜ

Fractal Index 특징

TokuDB에서 Fractal Tree Index는 Message 기반으로 동작을 합니다. 데이터 변화가 발생하더라도, 즉시 Leaf Node로의 전달이 일어나는 것이 아닌, 발생했던 이벤트를 각 노드가 가지는 Buffer에 순차적으로 붙이고, 버퍼가 가득 차게 되면, 자식 노드로 버퍼에 저장된 메시지를 전달합니다.

Fractal Index in TokuDB

위 그림에서 가장 마지막에 수행된 연산은 99번 데이터를 지우라는 것이나, 실제로 Leaf Node에서 즉시 지워지지 않습니다. 이에 대한 이벤트는 메시지 형태로 버퍼에 저장이 되고, 관련 내용은 언젠가는 Leaf Node로 전달되어 적용될 것입니다.

자~! 야심한 이 밤!! 여기까지 정리하도록 하겠습니다. ^^
사실 B-Tree와는 컨셉이 조금 다른지라, 많이 헤매기도 했었지만.. 그림을 그리다보니 여기까지 오게되었네요. -_-;;

저와는 조금 다르게 생각하시는 분은 언제든지 제게 지적질을 해주세요!! 원래 지적 받으며 성장하기 마련..쿨럭~!


 

예전 포스팅을 새삼 여기에 붙인 이유는 무엇일까요? TokuDB에 대한 내용 2탄을 작성하기 위해서죠. ^^ 어쩌다 보니, TokuDB 를 조금 더 깊에 테스트하게 되었는데, 조만간 정리하여 블로그에 포스팅하도록 하겠습니다.

MariaDB/Galera Cluster 기술 노트!!

Overview

MariaDB에서 MariaDB/Galera Cluster 제품군을 새롭게 출시하였습니다.MariaDB/Galera는 MariaDB의 Synchronous 방식으로 동작하는 다중 마스터 클러스터입니다.

MariaDB/Galera Cluster은 Galera 라이브러리를 사용하여 노드 간 데이터 복제를 수행합니다. 물론 아직은 Alpha 버전으로 발표되기는 했지만, 조만간 안정적인 버전이 릴리즈 되면 상당한 물건이 될만한 놈입니다.

오늘은 이에 관해 간단하게 리뷰를 하겠습니다.

Feature & Benefits

먼저 MariaDB/Galera Cluster의 특징은 다음과 같이 몇 가지로 나눠볼 수 있습니다.

  • Synchronous 방식으로 노드 간 데이터 복제
  • Active-Active 방식의 다중 마스터 구성 – 모든 노드에서 읽기/쓰기가 가능
  • 클러스터 내 노드 자동 컨트롤 – 특정 노드 장애 시 자동으로 해당 노드 제거
  • 자동으로 신규 노드 추가
  • 완벽한 병렬적으로 데이터를 행단위로 복제
  • 기존의 MySQL 클라이언트 방식으로 동작

cluster-diagram1
출처 : http://www.percona.com/doc/percona-xtradb-cluster/_images/cluster-diagram1.png

이와 같은 특징에서 전통적인 Asynchronous 방식의 리플리케이션이 가지는 한계점이 해결됩니다.

  • 마스터/슬레이브간 데이터 동기화 지연 없음
  • 노드 간 유실되는 트랜잭션이 없음
  • 읽기/쓰기 모두 확장이 가능
  • 클라이언트의 대기 시간이 줄어듬 – 데이터는 로컬 노드에 존재

하지만 Replication이 가지는 본연의 한계점은 여전히 내재합니다.

  • 신규 노드 추가 시 부하 발생 – 신규 노드 추가 시 모든 데이터를 복사해야 함
  • 효과적인 쓰기 확장 솔루션에는 한계 – 서버 간 Group Communication시 트래픽 발생
  • 모든 서버 노드에 동일한 데이터를 유지해야 함 – 저장 공간 낭비

MariaDB/Galera Cluster

MariaDB/Galera cluster는 Galera 라이브러리를 사용하여 리플리케이션을 수행한다고 하는데 Galera Replication은 어떤 방식으로 동작할까요?

Galera Replication은 wsrep API로 노드 간 통신을 하며, MariaDB 측에서는 wsrep API에 맞게 내부적인 개선하였다고 합니다. MySQL-wsrep는 https://launchpad.net/codership-mysql에서 시작한 오픈소스 프로젝트입니다.

MySQL-wsrep는 MySQL의 InnoDB스토리지 엔진 내부에서 Write Set(기록 집합 : 트랜잭션의 기록하는 모든 논리적인 데이터 집합)을 추출하고 적용하는 구현됩니다. 노드 간 Write Set을 전송 및 통신을 위해서는 별도의 리플리케이션 플러그인을 사용하며, 리플리케이션 엔진은 wsrep에 정의된 Call/Callback 함수에 따라 동작합니다.

1) Synchronous vs. Asynchronous

먼저 Synchronous와 Asynchronous 리플리케이션의 차이점에 대해서 설명하겠습니다.

리플리케이션의 두 가지 방식의 가장 기본적인 차이점은 클러스터 내 특정 노드에서 데이터 변경이 발생하였을 때 다른 노드들에 동시에 데이터 변경이 적용되는 것을 보장는지 여부에 있습니다.

Asynchronous 방식의 Replication은 마스터 노드에서 발생한 변화가 슬레이브 노드에 동시에 적용되는 것을 보장하지 않습니다. 마스터/슬레이브 간 데이터 동기화 지연은 언제든 발생할 수 있으며, 마스터 노드가 갑자기 다운되는 경우 가장 최근의 변경 사항이 슬레이브 노드에서는 일부 유실될 수도 있는 가능성도 있습니다.

Synchronous 방식의 Replication은 Asynchronous에 비해 다음과 같은 강점을 가집니다.

  • 노드 장애 시에도 데이터 유실 없이 높은 가용성 달성
  • 트랜잭션은 모든 노드에서 동시 다발적으로 발생
  • 클러스트 내 모든 노드 간 데이터 일관성을 보장

그러나 Synchronous Replication 수행을 위해서는 2단계 Commit 필요하거나 분산 잠금과 같은 상당히 느린 방식으로 동작합니다.

Synchronous 방식의 Replication은 성능 이슈와 및 복잡한 구현 내부적으로 요구되기 때문에 여전히 Asynchronous 방식의 Replication이 널리 사용되고 있습니다. 오픈 소스 대명사로 불리는 MySQL과 PostgreSQL이 Asynchronous 방식으로만 데이터 복제가 이루어지는 것 또한 그와 같은 이유에서입니다.

2) Certification Based Replication Method

성능 저하 없이 Synchronous하게 데이터베이스 리플리케이션을 구현하기 위해 “Group Communication and Transaction Ordering techniques”이라는 새로운 방식이 고안되었습니다. 이것은 많은 연구자들(Database State Machine Approach and Don’t Be Lazy, Be Consistent)이 제안했던 방식으로, 프로토타입 구현해본 결과 상당한 발전 가능성을 보여주었던 바가 있습니다.

Galera Replication은 높은 가용성과 성능이 필요한 어플리케이션에서는 상당히 쉽고 확장 가능한 Synchronous 방식의 리플리케이션을 제공하며 다음과 같은 특징이 있습니다.

  • 높은 가용성
  • 높은 투명성(알기 쉽다는 의미)
  • 높은 확장성(어플리케이션에 따라 거의 선형적인 확장까지도 가능)

Galera 리플리케이션은 분할된 라이브러리와 같이 동작하고, wsrep API로 동작하는 시스템이라면 어떠한 트랜잭션과도 연관되어 동작할 수 있는 구조입니다.

3) Galera Replication implementation

Galera Replication의 가장 큰 특징은 트랜잭션이 커밋되는 시점에 다른 노드에 유효한 트랜잭션인지 여부를 체크하는 방식으로 동작한다는 점입니다. 클러스트 내에서 트랜잭션은 모든 서버에 동시에 반영되거나 전부 반영되지 않는 경우 둘 중 하나입니다.

트랜잭션 커밋이 가능한 여부는 네트워크를 통해서 다른 노드와의 통신에서 결정합니다. 그렇기 때문에 커밋 시 커밋 요청에 대한 응답 시간이 존재하죠. 커밋 요청에 대한 응답 시간은 다음 요소에 영향을 받습니다.

  • 네트워크 왕복 시간
  • 타 노드에서 유효성 체크 시간
  • 각 노드에서 데이터 반영 시간

여기서 재미있는 사실은 트랜잭션을 시작하는 시점(BEGIN)에는 자신의 노드에서는 Pessimistic Locking으로 동작하나, 노드 사이에서는 Optimistic Locking Model로 동작한다는 점입니다. 먼저 트랜잭션을 자신의 노드에 수행을 하고, 커밋을 한 시점에 다른 노드로부터 해당 트랜잭션에 대한 유효성을 받는다는 것이죠. 보통 InnoDB와 같이 트랜잭션을 지원하는 시스템인 경우 SQL이 시작되는 시점에서 Lock 감지를 하나, 여기서는 커밋되는 시점에 노드 간 트랜잭션 유효성 체크를 합니다.

위 그림에서 커밋되는 시점에 마스터 노드에서 슬레이브 노드에 이벤트를 날립니다. 그리고 슬레이브 노드에서 유효성 체크 후 데이터를 정상적으로 반영하게되면 실제 마스터 노드에서 커밋 완료가 되는 것이죠. 그렇지 않은 경우는 롤백 처리됩니다. 이 모든 것은 클러스터 내부에서 동시에 이루어집니다.

4) Galera Replication VS MySQL Replication

CAP 모델 관점에서 본다면 MySQL Replication은 “Availability”과 “Partitioning tolerance”로 동작하지만 Galera Replication에서는  “Consistency”과 “Availability” 로 동작한다는 점에서 차이가 있습니다. MySQL Replication은 데이터 일관성을 보장하지 않음에 반해 Galera Replication은 데이터 일관성을 보장합니다.

C – Consistency (모든 노드의 데이터 일관성 유지)
A – Availability (모든 노드에서 항시 Read/Write이 가능해야 함)
P – Partitioning tolerance (내부 네트워크 단절 시에도 정상적으로 작동해야함)

5) Limitations

현재는 Alpha 버전으로 릴리즈되었고, 추후 안정적인 버전이 나오겠지만, 태생적으로 가지는 한계가 있습니다.

데이터 일관성 유지를 위해서 트랜잭션이 필요한 만큼, 트랜잭션이 기능이 있는 스토리지 엔진에서만 동작합니다. 현재까지는 오직 InnoDB에서만 가능하다고 하네요. MyISAM과 같이 커밋/롤백 개념이 없는 스토리지 엔진은 데이터 복제가 이뤄질 수 없다는 점이죠.

Row 기반으로 데이터 복제가 이루어지기 때문에 반드시 Primary Key가 있어야 합니다. Oracle RAC와 같이 공유 스토리지에서 동일한 데이터 파일을 사용한다면 Rowid가 같으므로 큰 문제가 없겠지만, 물리적으로 스토리지가 독립적인 구조이기 때문이죠. 이것은 기존 MySQL Replication에서도 주의하고 사용해야할 사항이기도 합니다.

최대 가능한 트랜잭션 사이즈는 wsrep_max_ws_rows와 wsrep_max_ws_size에 정의된 설정 값에 제약을 받으며, LOAD DATA INFILE 처리 시 매 1만 건 시 커밋이 자동으로 이루어집니다.

트랜잭션 유효성이 커밋되는 시점에서 이루어지며, 동일한 행에 두 개의 노드에서 데이터 변경을 시도한다면 오직 하나의 노드에서만 데이터 변경이 가능합니다.

또한 원거리 리플리케이션 경우 커밋에 대한 응답 요청으로 인하여 전반적인 시스템 성능 저하가 발생합니다.

Conclusion

MariaDB/Galera Cluster은 전통적인 MySQL Replication이 가지는 가장 큰 문제점이었던 데이터 동기화 지연과 노드 간 트랜잭션 유실 가능에 대한 해결책을 제시합니다.

또한 노드 내부에서는 InnoDB 고유의 트랜잭션으로 동작하고, 실제 커밋이 발생하는 시점에 다른 노드에게 유효성을 체크 및 동시 커밋한다는 점에서 재미있는 방식으로 동작하죠. 결국 기존 MySQL 아키텍트는 그대로 유지하고, Replication 동작에 관한 방법만 수정하여 RDBMS 기반의 분산 DBMS 를 내놨다는 점에서 상당히 흥미로운 제품입니다.

그러나, 동일한 데이터 변경 이슈가 많은 서비스 경우 노드 간 데이터 충돌이 자주 발생 가능성이 있을 것으로 판단됩니다. 데이터 충돌이 발생하여 자주 트랜잭션 롤백이 발생하면 사용자 별로 원활한 서비스 사용이 불가하니, 이에 대한 대책을 어플리케이션 레벨에서 적절하게 고려하여 서비스 설계를 해야 하겠죠. 예를 들어 노드 단위로 주로 변경할 데이터를 나눠서 처리하는 방식으로 서비스 설계가 이뤄져야하지 않을까 생각합니다.

Synchronous 방식으로 노드 간 데이터 복제가 이루어진다는 점에서 아주 반가운 소식이기는 하지만, 기존과 같이 데이터를 설계하면 오히려 서비스 안정성이 크게 떨어질 수도 있다는 점에서 새로운 변화가 예상됩니다.

관련 벤치마크와 안정성 검토가 반드시 필요합니다. 데이터는 거짓말을 하지 않으니..^^

감사합니다.